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Abstract

This thesis provides a fundamentally new, systematic study of multipoint mul-
tirate signal processing systems. The multipoint multirate operators are analyzed via
equivalent circuits comprised entirely of conventional multirate operators. Intercon-
nections of the operators are demonstrated, and the multipoint noble identities are
derived. The multipoint polyphase representation i.s presented, and the M channel
multipoint multirate system with vector length N is presented as an M N channel

multipoint polyphase system.

The conditions sufficient for perfect reconstruction in the multipoint multirate
system are derived. These conditions constrain the multipoint filter banks to be
composed of comb filters generated from paraunitary sets of conventional filters.
The perfect reconstruction multipoint multirate system is then combined with the
multiresolution wavelet decomposition to form the generalized wavelet decomposition

with varying vector decimation length at each level.

The generalized wavelet decomposition is used as an algorithm to redistribute
the energy of a signal throughout the levels of the decomposition. It is shown that,
for band pass and high pass signals, significant improvements can be made in the
energy distribution. It is recommended that this algorithm be studied as a front end

to a vector quantizer for data compression applications.

viil




Multipoint Multirate Signal Processing

1. Introduction
1.1  Problem Statement

The study of multirate systems has advanced considerably in recent years. In
particular, the basic building blocks have been explored [2], the conditions necessary
for perfect reconstruction have been derived [13, 22, 19}, and the relationship between

multirate systems and the wavelet decomposition has been demonstrated [22, 19].

Recently, Khansari and Leon-Garcia have presented a few of the fundamentals
of multirate systems with block sampling [6], or “multipoint multirate”. Meanwhile,
vector transforms were introduced for image coding by Li [7, 8, 9], where input and
output signals are finite length vectors of the same dimension. Li [7, 8, 9] has shown
that these vector transforms have an advantage for image coding at low bit rates,
because the local correlation between samples can be exploited more optimally when

block signals are used.

Subsequently, being motivated by both the theoretical arguments of Khansari
and Leon-Garcia and the practical arguments of Li, Suter and Xia have completed
a more systematic presentation of vector filter banks [23], vector sampling [23], and
vector wavelets [16]. However, there is still more research to be done in the area
of multipoint multirate. This work presents new insights by providing a systematic
study for relating multipoint multirate signal processing systems to conventional
multirate signal processing systems. In addition, no work prior to this research has
explored the idea of varying vector lengths at different levels of the multiresolution

wavelet decomposition.




Thus, the purpose of this thesis is the following: generalize the fundamentals
of multipoint multirate signal processing and apply these fundamentals to a data
compression feasibility study based on the multiresolution wavelet decomposition

with generalized sampling.

1.2 Thesis Layout

Chapter II will present the background of this thesis by providing é summary
of the fundamentals of conventional multirate systems and wavelet theory. The
basic multirate building blocks, the decimator and the expander, will be analyzed,
and the conditions for perfect reconstruction will be presented. In addition, the
fundamentals of the wavelet decomposition will be discussed, and the relationship

between the wavelet decomposition and multirate systems will be examined.

In Chapter III, the theoretical foundations of multipoint multirate will be
presented. The generalized multipoint building blocks, the block decimator and block
expander, will be presented and the corresponding z-transforms will be derived. A
method for generating perfect reconstruction multipoint multirate filter banks with
vector lengths that vary from stage to stage will be presented. The application of the
resulting perfect reconstruction multipoint multirate systems to the multiresolution

wavelet decomposition will be studied.

In Chapter IV, a data compression feasibility study will be presented. It will
be shown that signal energy can be redistributed between the levels of the multireso-
lution wavelet decomposition, and that this redistribution can theoretically increase

the amount of data compression.

Chapter V will summarize the results of this thesis and outline recommenda-

tions for future research.




II. Background
2.1 Comb Filters

A comb filter is created from a prototype filter via the mapping z — ™. That
is, given a prototype filter Q(z), the z-transform of the comb filter for a given M
is Q(zM). This implies a certain “pseudo-periodic” nature of the comb filter with

period M.

Gianpaolo Evangelista [5] implemented a transform based on comb filters to
separate the periodic trends in a signal from the period-to-period fluctuations. This
was accomplished by matching the comb transformation M to the periodicity of the
input signal.

It will be shown in chapter III that comb filters naturally arise in the study of

multipoint multirate systems.

2.2 Conventional Multirate Fundamentals

2.2.1 Definitions.  The two building blocks of multirate processing are the
decimator and the expander [17, 2]. Both building blocks are linear, time-varying

systems. The decimator is defined by the equation
yp(n) = z(Mn)
where M is a positive integer, and the expander is defined by the equation

z(n/L) ,ifn is an integer multiple of L
ye(n) =
0 , else
where L is a positive integer. Decimation by M = 2 retains every other point of a

sequence, decimation by M = 3 retains every third point, etc. The value of M is

the “decimation ratio”. Expansion by L = 2 places a zero between each point of




the original sequence, expansion by L = 3 places two zeros between each point of
the original sequence, etc. The value of L is the “expansion ratio” [19, 2]. Figure 1

depicts examples of decimation and expansion on a sample sequence.
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Figure 1. Examples of Decimation and Expansion. (a) Decimation by 2. (b) Deci-
mation by 3. (c) Expansion by 2. (d) Expansion by 3.

If y(n) is a decimated version of z(n) with decimation ratio M, then the cor-
responding notation is given by y(n) = (z(n)) I . Similarly, if y(n) is an expanded
version of z(n) with expansion ratio L, then the corresponding notation is given by
y(n) = (z(n)) Tr. As shown in Figure 1, the block diagram of decimation by M is a
down arrow along with the decimation ratio M, and the block diagram for expansion

by L is an up arrow along with the expansion ratio L [17, 2].

2.2.2 z-Transforms of Building Blocks. The z-transforms of the basic
building blocks of conventional multirate were summarized in the presentation of
Crochiere and Rabiner [2]. The z-transform of an expanded sequence is defined by
YE(z) = X(21). Thus, the z-transform of Y(2) is composed of compressed versions

of the z-transform of the original sequence centered at every 2x /L. The z-transform




of a decimated sequence is given by

M-1
>, X(zl/MWk), W = exp(—j2r /M)

k=0

1
Yo(z) = i
The z-transform of Yp(z) is composed of stretched versions of the original z-transform
centered at every 2m. Figure 2 provides an example of the Fourier Representation
of expansion and decimation on a band limited signal. Figure 2c illustrates the
phenomenon of “aliasing” (overlap of adjacent waveforms in the Fourier domain)
caused by decimation. Moreover, when aliasing occurs, it is not in general possible

to recover the original sequence from the decimated sequence [2].

X(w)

(a) \ '
t t $ t t + + + t w

- 0 1 2r
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© T

Figure 2. Fourier Representation of Decimation and Expansion. (a) Fourier rep-
resentation of original sequence. (b) Fourier representation of sequence

expanded by L = 4. (c) Fourier representation of sequence decimated by
M =2.

2.2.3 Manipulation of Building Blocks. After the Fourier representation
of the decimator and expander were developed, Crochiere and Rabiner explored

various ways to connect the building blocks [2]. Using the notation of section 2.2.1,




the following equations characterize the ways in which decimators can be combined

together:

ofz(n)} | = {az(n)} ln, «any scalar

{z1(n) + 22(n)} Ie = {&1(n)} s + {22(n)} Im

{z1(n) x z2(n)} L = {=1(n)} I X {z2(n)} L

Moreover, the same equations hold when the decimators are replaced with expanders.

Cascades of decimators and expanders can be exchanged only when the deci-
mation ratio M and the expansion ratio L are relatively prime, i.e. gcd(M, L) = 1.

When this requirement on M and L holds, the following equation is valid:
{{z(n)} In} To = {{z(n)} 1o} Im

The following two expressions provide the rules for the interchangeability of

filters with the basic multirate building blocks:

{(X(2)G(E")} M = {X(2) I} G(2)
{X(2)G(2)} 1 = {X(2)10} G(<")

These expressions are known as the Noble Identities [19]. It is important to note
that the noble identities are only valid when G(z) is comprised of integer powers of

z. For example, the noble identities do not hold for G(z) = z~*/2.

2.2.4 Polyphase Identities. The polyphase representation was originally
developed by Maurice Bellanger et al [1] to describe the equivalence classes that
result from the decomposition of a signal. In the mid 1980’s, Martin Vetterli [22]
and P.P Vaidyanathan [18] applied the polyphase representation to the study of

multirate filter banks.




Consider the problem of breaking a filter 2(n) into its even and odd polyphase
components. Let the z-transform of h(n) be H(z), that is, H(z) = Z_,, h(n)z™".
After separating h(n) into the two subsequences 2(2n) and k(2n 4 1), we obtain the

following expression for H(z):

H(z) = i h(2n)z™*" + i h(2n + 1)z~ (@r+)

n=-—oo n=—oo

= Y R(2n)z7™ 4+ 270 Y h(2n41)27%
Let Eo(z) and E;(z2) represent the z-transforms of the two subsequences of

h(n), that is,

Ey(2) = i h(2n)z"", Ei(z) = i h(2n+1)z7"

nI=m-—00 =200

Then, H(z) can be written as
H(z) = Eo(2%) + 27 E1(2%)

These filters Eo(2) and FEj(z) are the even and odd polyphase components of the
filter H(z).

Figure 3 demonstrates how the polyphase components of a filter can be substi-
tuted into a multirate system. Figures 3a-3c demonstrate the replacement of H(z)
with H(z) = Eo(2?) + 271 E;(2%). Applying the noble identities to the polyphase
components results in the block diagram shown in figure 3d. This block diagram is

also referred to as the polyphase representation of H(z).

In general, the polyphase representation of a filter H(z) for an arbitrary deci-

mation ratio M is given by

M-1
H(z) = Eo(2M) + 27 By (M) + -+ 2 M VB (M) = Y 27 By (2M)

=0




E2) 112 12 - Byl
=8 e
y 2 12 1§
(c) (d)

Figure 3. Polyphase Representation. (a) Original System. (b) Substitution of
Polyphase Components for H(z). (c) Splitting the Decimator. (d) Ap-
plication of Noble Identities

where E;(z) = Y. h(Mn +1)z"".

=00
The polyphase representation can also be derived for expanders instead of
decimators. H(z) is still written in terms of its polyphase components, except the
second noble identity is used to pass the polyphase components back through the

expanders.

2.8  Perfect Reconstruction Multirate Systems

A multirate filter bank is an M-channel system as shown in Figure 4. The
set of filters {Ho(2)--- Hp—1(2)} is called the “analysis bank” and the set of filters
{Fo(2)--- Fpr—1(2)} is called the “synthesis bank” [20, 22, 17].

It is possible to choose the analysis and synthesis filters such that the output

of the multirate system is a delayed (and possibly scaled) version of the input. Such




X(z) U v
1 = =t R g
U V,(2)
H (2 lM i TM — F.(2
U A
i e ey s Je g Xe)

Figure 4. M Channel Multirate Filter Bank

a system is said to exhibit the “Perfect Reconstruction” property, or the “PR”
property. This property was first studied by Smith and Barnwell [13] and Mintzer
[11] for the two channel system, and later extended to the M channel system by
Vetterli [22] and Vaidyanathan [18].

In an M channel multirate system, each of the filters H;(z) and Fj(z) are
written in terms of their M polyphase components E;;(z) and R;;(z). That is,

M-1
Hi(z) = ) z7Ei(z")
7=0
M-1 _
Fi(z) = Y zM717IR, (M)
=0

The polyphase components of the analysis filters can be placed into a polyphase
matrix E(zM), where the 1** row of E(zM) is composed of the polyphase components

of H;(z). In similar fashion, the polyphase components of the synthesis filters make




up the columns of the polyphase matrix R(zM). These polyphase matrices are:

[ Boo(zM)  Eoa(zM) -+ Eom-i(zM) |
e
| Bar1o(z™) Baraa(zM) - Enoan-i(2M) |
and ] ]
Roo(z™)  Roi(zM) -+ Ropr-a(zM)
A
i Rur-1,0(zM) Ry-11(2M) -+ Rar—1m-1(2M)

After application of the noble identities to these polyphase matrices, the M
channel multirate system shown in figure 4 can be redrawn as the M channel polyphase

system shown in figure 5.

M TM Z-(M-”
-1 -(M-2)
4 M TM 4
2 Iy E(2) R(z)
u}
Z-(M-1)
ju i

Figure 5. M Channel Multirate System with Polyphase Matrices
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In this polyphase representation, the system exhibits perfect reconstruction

[19] if and only if

0 IM—’I‘
P(z) = R(2)E(z) =cz™™
271, 0
where ¢ is some scalar, mg is a nonnegative integer and r € {0,1,---, M —1}. Note

that when r = 0, the equation becomes P(z) = R(z)E(z) = cz~™ Iy In this case,
R(z) must be chosen such that R(z) = cz"™ E~!(2). In general, the inverse of E(z)
may not exist. If E~'(z) does exist, it may not be realizable with finite impulse
response (FIR) filters, even if E(z) is entirely composed of FIR filters. However, a
special case arises when F(z) is chosen to be “paraunitary”.

A matrix E(z) is paraunitary if E7'(z) = E(z), where E(z) = E¥(271). That
is, E(z) is the complex conjugate transpose of E(z) with z replaced by z71, and
E(2)E(z) = 1. Clearly, if E(z) is paraunitary, then R(z) can be chosen to equal
E () and the resulting P(z) will equal the identity. For a maximally decimated filter

bank, the perfect reconstruction property is equivalent to biorthogonality [4].

When E(z) is paraunitary and R(z) = E(z), then the resulting system will
exhibit the PR property with the additional advantage that, if the analysis bank
is composed of FIR filters, then the synthesis bank will also be composed of FIR
filters. Thus, the special case of a paraunitary filter bank is very useful in the design
of perfect reconstruction multirate systems [20, 22]. Moreover, if an orthonormal
basis can be generated by using a tree structure (such as in the Discrete Wavelet De-
composition), then the basis can also be generated by a paraunitary tree [14]. Thus,

a close relationship exists between paraunitariness and orthogonal decompositions.

2.4 Multiresolution Wavelet Decomposition and Multirate Signal Processing

2.4.1 Wavelet Decomposition Fundamentals. A recurring theme in the

multiresolution wavelet decomposition is the successive projection of a function

11




into “smaller” orthogonal subspaces (see, for example, “Daubechies Ten Lectures

on Wavelets”[3]).

Let {Vin},.cz be a sequence of nested subspaces constructed in L*(R) such that
Vi CVier Vme Z.

Let f be a function which exists in the subspace V;,_;. Let P, be the projection
operator which takes the function f € V,,_1 into the nested subspace V;, C Vi1
This projection operator eliminates the portion of f which is not in V,,, while it does
not disturb the portion of f which lies in V,,. Clearly, successive application of the

same projection operator does not effect the result, i.e., (Pn)* = P, Vk € Zt.

Let {W,.}mez be another sequence of nested subspaces such that W, C
Vieer ¥V m € Z. Further, let the span of V,, UW,, equal V,,_;, and let V,, and
W,. be orthogonal subspaces. Thus, V,,.y = V,, ® W,,, and V,, "N W,, = ¢. Let
Qm = I — P, (where I is the identity operator) be the orthogonal projection op-
erator which takes the function f into the nested subspace W,, C V,,_;. Thus,

P.Q, = Q. P, =0, where 0 is the zero operator.

Let the set of functions {@y}iez be an orthonormal basis for V,,, and let the
set of functions {¥, 1 }icz be an orthonormal basis for W,,. Then, the projection of
f into V,, can be expanded in terms of the basis functions for V,,, and the projection
of f into W,, can be expanded in terms of the basis functions for W,,, resulting in

the following equalities:

[P f] Ecm ¢ml

[me] Zd ¢m l

To find a particular coefficient ¢, (1), one takes the inner product of P, f with

the basis function ¢, ;. The inner product of two arbitrary real valued functions f

= [ ftatyat

12

and ¢ is defined by




The inner product of P, f and @,,; is written as (Py f, ¢m ). The inner product of
any two basis functions is {¢m 1, §m k) = 6k, since the basis functions are orthonor-

mal. Therefore, a particular coefficient is found as follows:

(Prfydmi) = (Zkem(k)bmp, dmy)
= Yk cmlk) (dm ks Sm)
= Trem(k)or,
= cm(l)

We assume that the signal f exists entirely in the space V,,,_; for some m € Z.
That is, Pn_1f = f, and f can be completely represented as a linear combination

of the basis functions for V,,_;. However, since P, + @, = I, we can write

Pm—lf = me+ me
Therefore, any particular decomposition coeflicient in V;, can be written as

en(l) = (Puf, émy)

= ((Pn-1f = Quf), bm)
(Pr-1f, $mi) = (Qmfs Pmy)
(Pr-1f, ém)

This last equality holds because Q. f is in W,,,, ¢, is a basis function for V,,,
and V;, and W, are orthogonal, so (@ f, ¢m,1) = 0.

If P,_1f is expanded in terms of the basis functions for V,,_; and the results

substituted into the expression for ¢, ({), then

Cm(l) = <mea ¢m,l>
= ((Zn cm—l(n)¢)m——1,n)7 ¢m,l>
= Zn Cm—-1 (’I’L) <¢m—1,na ¢m,l>

13




In similar fashion, it can be shown that
dm(l) - Z cm—l(n) (Qbm—l,m ¢m,l>

For the case of discrete wavelet filters, the inner product of a basis function for

V,.—1 and a basis function for V,, can be written as an FIR filter, that is

<¢m—1,n7 ¢m,l> = h/(n - 21)
(¢m—1,na 7w/)m,l> = ¢'(n— 2l>

where the discrete wavelet filters A’ and ¢’ are independent of the decomposition level
m.. Thus, if the coefficients ¢,,_1(n) of f € V,,—1 are known, then the coeflicients of

the projection of f into V,, and W,, are

en(l) = ¥, em-1(n)h’(n —20)
doll) = T enaln)g/(n— 2D

where c,,([) are the coefficients of P, f € V,, and d,,(I) are the coefficients of @, f €
W

Once the coefficients of the projection of f into V,, are known, the function can
be further decomposed into the orthogonal subspaces of V,,,, namely V;,11 and W, 44,
with the same formulas, since the discrete wavelet filters A’ and ¢’ are independent of
. the decomposition level m. This leads to a recursive decomposition routine, breaking
f down into its projections into smaller orthogonal subspaces. This recursive algo-
rithm is the heart of the modern multiresolution wavelet decomposition algorithm

12, 3, 10].

2.4.2 Relationship of the Wavelet Decomposition to Multirate Signal Process-

ing. As shown in section 2.4.1, at decomposition level m the coefficients ¢, (n)

14




can be written in terms of the coefficients at the next higher level as follows:
em(n) =Y cmo1 (k)R (k — 2n)
k
where h'(n) is a filter which satisfies the wavelet decomposition requirements, i.e.,

h,(n - 21) = (¢m—l,n’ ¢m,l>

A new filter h(n) can be created which is a “flipped” version of the filter A'(n),
that is, 2(n) = h'(—n). Substituting this filter h(n) into the expression for the

decomposition coeflicients yields:
cn(n) = emo1(k)h(2n — k)
k
Note that, if y(n) = (z(n)) |2, then y(n) = z(2n). Thus, ¢, (n) can be written as
cn(n) = Zk:cm—l(k) (h(n —k)) L2

In section 2.2.3, we saw that a(z(n))|m = (az(n))|m, where o is any scalar.

Hence, ¢,,(n) becomes
em(n) = Zk: (cm-1(k)h(n — k) |2

Also in section 2.2.3, we saw that {z1(n)+z2(n)} s = {z1(n)} L +{z2(n)} I .

Hence, ¢, (n) can be written as

em(n) = (zkj m-1(k)h(n — k)) L2
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Also note that, for two signals f(n) and g(n), their discrete convolution is given
by
f(n)*g(n) = f(k)g(n — k)
k

Thus, the expression for the decomposition coefficients ¢,,(n) can be simplified as
em(n) = (cm-1(n) * h(n)) |2

In similar fashion, the coeflicients c,,_1(n) projected into the space W, are

given by the expression
dm(n) = (¢m-1(n) * g(n)) L2

where g(n) = ¢'(—n) and ¢'(n) satisfies the wavelet decomposition requirement
g'(n—2l) = (pm-1,n Pm.1)

The filters A(n) and g(n) are traditionally chosen to be low pass and high pass
filters, respectively. Thus, the coefficients ¢,,(n) are referred to as the “low pass
coefficients” or “coarse coeflicients”, and the coefficients d,,,(n) are referred to as the

“high pass coeflicients” or “detail coefficients”[3].

With the above results, the decomposition of ¢,,—1(n) into ¢, (n) and d,,.(n) can
be viewed as a 2-channel multirate system, with the analysis bank comprised of the
wavelet filters 2 and g. If A and g satisfy the wavelet decomposition requirements,
then, in terms of multirate theory, the filters A and g form a perfect reconstruction
set [19, 12]. Thus, the recursive wavelet decomposition algorithm can be viewed as a
cascade of 2-channel multirate filters, as shown in figure 6. This figure demonstrates
the realization of the wavelet decomposition as a perfect reconstruction multirate

system.
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Figure 6. Multirate Implementation of the Multiresolution Wavelet Decomposition
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III. Theoretical Foundations of Multipoint Multirate Signal
Processing

3.1 Fundamentals of Multipoint Multirate Signal Processing

The fundamental building blocks of multipoint multirate are the multipoint
decimator and the multipoint expander. These building blocks are modified from
the conventional multirate building blocks (reference section 2.2.1) such that they
operate on multiple points of data (data vectors) simultaneously. This is why mul-

tipoint multirate is also referred to as “vector sampling” [6].

For example, instead of retaining every other point as in conventional decima-
tion by two, the multipoint decimator could retain the first two of every four points
(or the first two points of each data vector of length four). This would correspond to
multipoint decimation by (2,2). In general, multipoint decimation by (M, V) retains
the first N points from every set of length M N. M is the decimation ratio, and N is
the decimation vector length [6]. Multipoint expansion is defined in a similar man-
ner. Multipoint expansion by (L, N) places (L — 1)N zeros (or, equivalently, L — 1
zero-vectors each of length N) between each set of N data points [6]. See Figure 7 for
examples of multipoint decimation and expansion. Note that multipoint decimation

or expansion by (M, 1) is equivalent to conventional decimation or expansion by M.

3.1.1 Definition of the Multipoint Decimator. The equation of the mul-
tipoint decimator can be written as y(n) = z(|n/N]MN + nMODN), where the
floor function of k, denoted | k|, is the greatest integer < k. This expression for the
multipoint decimator is comprised of two fundamental pieces. The first, [n/N|MN,
accounts for the periodicity in a decimated signal. The original sequence is blocked
into vectors of length M N, and then these vectors are mapped into y(n) with period
N. The second term, nMODN, maps the first IV elements of every length M N input

vector into the output y(n). Thus, as n increases, the first term indexes the length
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Original Data Sequence

1 2 3 4 5 6 7 8 9 10 1 12 13 14
Function Resulting Output
(a) 1(23) 1 2 3 7 8 9 13 1
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(d)T(3,2)'r=::::::=:::::

Figure 7. Examples of Multipoint Decimation and Expansion. (a) Decimation by
(2,3). (b) Decimation by (3,2). (c) Expansion by (2,3). (d) Expansion
by (3,2).

MN data vectors, and the second term steps through the first N points of data in

each vector.

Note that, when N = 1, this equation reduces to y(n) = z(Mn). This is the

equation describing the single point decimator [2] which was discussed in section 2.2.

3.1.2 z-transform Analysis of the Multipoint Decimator.  In the z-transform
domain, the equivalent circuit of multipoint decimation by (M, N) is shown in figure
8. This equivalent circuit blocks the original sequence into vectors of length M N,
but only retains the first N points of every vector. This is mulfipoint decimation by
(M, N).

The building blocks in the equivalent circuit of figure 8 are all conventional
decimators and expanders which were discussed in section 2.2. As such, the z-

transform of the multipoint decimator, which will be denoted as (X (2)) | m,n, is:

] MN-1 /N-1 - -
X(2) lM,N = UN : ZZ: 2 M Wyn | X(z¥Wyy)
=0 =0
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Figure 8. Equivalent Circuit for Multipoint Decimator

where Wk, = exp (—j2rk/(MN)). This equation was derived as follows. Let U(z)

lth

be the output of the decimator in the [** channel of the equivalent circuit. Then,

Ufz) = (X(2)2') lmw
1 MN-=-1 . .
= UN X (278 Wiy )28 Wik
k=0

Let Vi(z) be the output of the expander in the I** channel of the equivalent circuit.
Then,

Vilz) = (Gi(2) v

= Uy(=")
1 MN-1 N & IN
= UN 3o X(zMF Wiy )z mF Wiy
k=0
1 M 1ok Lorrlk
= UN > XM Wyy)2 ¥ Wy
k=0

Now, the output of the equivalent circuit, X (2), is
N-1

() = Y i)

=
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In the last equation, the term inside the large parentheses is independent of
the input X(z); it is only a function of M,N, and k. This term will be called the
“Decimation Scaling Function”, and it will be denoted AD%,,. Hence, the output

of the multipoint decimator is given by

1 MN-1 . n .
X(2) lM,N =N Z ADynX(2MWyy)
k

=0

This equation demonstrates that multipoint decimation with a decimation ratio of
M and a vector length of N creates MN — 1 alias terms, whereas conventional

decimation with a decimation ratio of M creates only M — 1 alias terms.

3.1.3 Polyphase Analysis of the Multipoint Decimator. As stated above,
the multipoint decimator blocks the data into vectors of length M N, but only retains
the first N points of each vector. As shown in figure 8, this blocking is performed

by a bank of N conventional decimators, each with decimation ratio MN.

The input to the decimator in the first channel of the equivalent circuit is z(n),
so the output of this decimator is given by y(n) = z(MNn). As shown in section
2.2.1, the M N polyphase representation of any signal z(n) is
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where Fx(z) = ¥, a(MNn + k)z™" = 3, ex(n)z™". Thus, the output of the first
decimator in the equivalent circuit is y(n) = eg(n), where eg(n) is the first of the

MN polyphase components of the input signal z(n).

In similar fashion, the input to the decimator in the k* channel of the equiv-
alent circuit is 2*X(z). This can be written in terms of its polyphase components
E'(z) (where the prime demonstrates that these are not the polyphase components

of X(z) from above) as follows:

MN-1
sz(z): Z E;n(zMN)z_m

m=0

However, by substituting the polyphase representation for X(z) into 27¥X(z), the

following equivalent expression is derived:

*FX(z) = 2 (MglEl(zMN)z_l)

MN-1
Z EI(ZMN)Z—(l_k)

=0

By making the change of variable m = [ — k, we have

MN-~1~Fk

#X(z) = 3 Enpu(zMM)zm
m=—k
MN-1-k MN-1
— Z Em+k(ZMN)Z_m + Z Em+k+MN(zMN)z_m_MN
m=0 m=MN-k

But the polyphase representation of z°X(2) in terms of its own polyphase compo-
nents is
MN-1
FX(z)= > EL(ZMN)m
=0
By equating this expression for z*X(z) with the above expression for z*X(z), we

find that E{(z) = Ei(z). Decimation by MN in each channel of the equivalent

circuit retains only the first polyphase component of the input signal, so the output
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of the decimator in the %" channel of the equivalent circuit will be the k** polyphase

component of the input signal X(z).

These signals are subsequently expanded by N and multiplied by z7*, so the
final output Yi(2) of each channel in the equivalent circuit is Y;(2) = 27 Ej(z"V).
Forming the summation of these Y;(2) yields the polyphase decimation expression for
the output of a multipoint decimator, which is equivalent to the decimation relation
derived in section 3.1.2. This alternate representation with decimation ratio M and

vector length N is given by:

_kEk

an

In this polyphase expression for the multipoint decimator, the Decimation
Scaling Function has served to eliminate the higher order polyphase components in
each channel of the equivalent circuit. The resulting expression is the first N of
the M N polyphase components of the input signal z(n), each component expanded
by N and shifted an appropriate amount. In general, the original signal z(n) is
not recoverable because the highest (M — 1)N polyphase components have been
discarded.

3.1.4 Definition of the Multipoint Ezpander. The equation of the multi-

point expander can be written as

y(n) = z(|n/(NM)|N + nMOD(MN)) ,if nMOD(MN) < N
0 , else

This expression also has two fundamental pieces. The first, |n/(NM)|N,
controls the periodicity of the multipoint expansion. The input signal is blocked
into vectors of length N, and this term indexes those vectors. The second term,

nMOD(MN), indexes the points of data inside the vector. When this term is less
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than N, it maps the N points of the length N data vector into the output y(n).
Then, for N < nMOD(MN) < MN —1, a set of (M — 1)N zeros are mapped into
the output. Thus, as n increases, consecutive blocks of length N of the input signal
are mapped to the output with M — 1 zero-vectors of length N inserted between the

data vectors.

Note that, when the expansion vector length N = 1, this equation reduces to

z(n/M) ,if nis divisible by M
y(n) =
0 , else

This is the equation describing the conventional expander [2], which was discussed

in section 2.2.

3.1.5 ztransform Analysis of the Multipoint Ezpander.  In the z-transform
domain, the equivalent circuit of the multipoint expander with expansion ratio M
and vector length N is shown in figure 9. This equivalent circuit blocks the original
sequence into vectors of length N and then inserts M — 1 zero-vectors of length N

between the data vectors.

U2 V (z)
N 2 R
z N U,(2) N V@ S
—|MN) [~ = Z N U@ MN V@ 4
M lN U@ T " VN-1(Z) O

Figure 9. Equivalent Circuit for Multipoint Expander
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The building blocks in the equivalent circuit of figure 9 are all conventional
decimators and expanders which were discussed in section 2.2. As such, the z-

transform of the multipoint expander, which will be denoted as (X(z)) Tm,w, is:

N-1
(52 e xewi)

=0

X(2) WM,N = %NE—I

k=0

This equation was derived as follows:

Let Uj(z) be the output of the decimator in the /** channel of the equivalent

circuit. Then,

U(z) = (X(2)2)lw

Let Vi(z) be the output of the expander in the [** channel of the equivalent

circuit. Then,

Vi(z) = (Ui(2)) Tun
— Ul( MN)

1N1 _]‘_’fﬂ Ik
- § L X 0
N

T X X

Now, the output of the equivalent circuit, X (2), is

N-

X(z) = Y 27'Wi(z)

=0

= 1N1 M IMyx7lk
= Zz (NZX WN) WN)

=0 k=0

,_n

25




N k=0 [=0
R R YA T Myprk
k=0 =0

The term inside the large parentheses is again independent of the input X(z),
and is only a function of M,N, and k. This term will be called the “Expansion
Scaling Function”, and it will be denoted AE%;y. It can be used to simplify the

equation of the multipoint expander to

1 N-1

X(2) o = 5 2 ABjX (W)
k=0

In the next section, it will be shown that this scaling function is a byproduct of the
blocking nature of the multipoint expander. It is important to note that there is no
aliasing in the multipoint expander, and the original signal is completely recoverable

from the expanded signal.

3.1.6 Polyphase Analysis of the Multipoint Ezpander. As stated above,
the multipoint decimator blocks the data into vectors of length N, and then places
M —1 zero-vectors of length N between the blocks of data. Asshown in figure 9, this
blocking is performed by a bank of N conventional decimators, each with decimation

ratio V.

This data-blocking bank of decimators is similar to the blocking nature of the
decimator, except the data are blocked into vectors of length N and all the blocks
are retained. Thus, with minor modification to the derivation of section 3.1.1, the
output of the decimator in the k™ channel of the equivalent circuit will be the k*

polyphase component of the input signal X (z).

These polyphase components are subsequently expanded by M N and multi-

plied by 27%, so the final output Y;(2) of each channel in the equivalent circuit is
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Yi(2) = 2 FEy(zMY). Forming the summation of these Y;(z) yields the polyphase
expansion expression for the output of a multipoint expander, which is equivalent to
the expansion relation derived in section 3.1.4. This alternate representation with

expansion ratio M and vector length N is given by:

X(z) = Nz_:l 2 R B (2MN)
k=0
In this polyphase expression for the multipoint decimator, the Expansion Scal-
ing Function has served to eliminate the higher order polyphase components in each
channel of the equivalent circuit. The resulting expression is comprised of all N of
the N polyphase components for the input signal z(n). The components have been
expanded by M N and shifted to comprise the complete expanded signal. The orig-
inal signal is completely recoverable by reblocking the expanded signal into vectors
of length M N and then only retaining the first N points of each block. As discussed

in section 3.1.2, this inverse operation is multipoint decimation.

3.1.7 Interconnections of Building Blocks. This section provides proofs
for the basic interconnection properties of the multipoint decimator and expander.
These interconnection properties are depicted (for the multipoint decimator) in fig-
ures 10,11, and 12. The first two properties demonstrate that the multipoint building

blocks are linear operators.

3.1.7.1 Scaling a Decimated Sequence by a Constant o. A sequence
can be multiplied by a scalar prior to or after multipoint decimation; the results are

identical. See figure 10.

Y(2) = a[X(2)]lun




1 MN-1 /N-1 l(l—-M) I [ 1 . :'
= T Z M WMN) aX(z¥Wyy)
MN k=0 =0
= [aX(2)] [N

X(n) —

wn =D = ) =Pty 00

o o

[ —

Figure 10. Scaling a Decimated Sequence by a Scalar

3.1.7.2 Adding Two Decimated Sequences. Multipoint decimation
can be performed on the sum of two sequences, or the decimation can be performed

prior to the summation. In either case, the results are identical. See figure 11.

Y(2) = [Xi(2) + Xa(2)] MmN

= MN Z (Z 21(%)WJI\/I;N) [Xl(ZJMWJ@N) + Xz(z%Wf,,N)]

\ X 1(n) I l MN
op iU i)
) )~

Figure 11. Adding Two Decimated Sequences

3.1.7.8 Multiplying Two Decimated Sequences. Two sequences may

be multiplied point by point prior to or after multipoint decimation. The results are
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the same either way. To prove this, the following relationship is required:
If u(n) = z(n) x d(n), then U(e’*) = X (/) * D(e!*), where * denotes convolution.
Therefore, if

y(n) = [z(n) x d(n)] [mn

then, in the Fourier domain,

Y(e) = [X()* D(e™)] L
1 MN-1 /N-1 ol o .
= N (Zeﬂw“T)W%) [X(F3Why) * D Wipy)]
k=0 =0

and, since convolution is linear in each variable (i.e. bilinear),

) 1 MN-1 /N-1 ) Yy o
V) = gy 2 (5 W) X W)
k=0 [=0
| MNZUN-L N
MN Z (Z e’ (T)WMN) D(ejw—MWMN)

k=0 =0

= [X()] lun * [D(E)] Lun

%

Thus, in time,

y(n) =[e(n)] Ly x [d(n)] [an

x(n) D [y x(n) | yin)

14

d(n) d(n) —>|M,N

Figure 12. Multiplying Two Decimated Sequences

These three equalities all hold true when multipoint expansion is substituted

for multipoint decimation.
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3.1.8 Multipoint Noble Identities. The Noble Identities for multipoint
decimators and expanders are depicted in figures 13a and 13b. The proofs for these

identities are presented below:

(@) X(z)aG(zMN)alM,N —Y(2) = X(z)—>lM,N 6" FY(@)

[y |G |~V

(b) X@~ 6E" —>1M,N — Y(2)

Il
>

=~
|

Figure 13. Multipoint Noble Identities. (a) First Noble Identity. (b) Second Noble
Identity

3.1.8.1 The First (Decimation) Noble Identity (Figure 13a).

Y(2) = [ )G(zM
1 MN: KAy ok 1ok N1 MNk
- v & (2 e
_ ML ( -MMw;;N) X (3 W) G(Y)
= MY 1X( z)]l

8.1.8.2 The Second (Ezpansion) Noble Identity (Figure 13b).

Y(z)

I
=
N
Q
~

2

)| Tan

) zl<N~l)W}V’€) X(MWH)GEMNWEF)

#W -1>W}§) X(MWEHG(MN)

(
.
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3.1.9 Multipoint Polyphase Representation. In order to develop the mul-
tipoint polyphase identities for a filter H(z), the filter must be decomposed into
its MN conventional polyphase components. The resulting polyphase equation for

multipoint decimation with decimation ratio M and vector length N is given by

where

Ex(2) = i h(MNn + k)z™"

n=—0oo
For an M channel multipoint multirate system with analysis filters {Ho(#), Hi(2),
-+, Hyn—1(#)}, the polyphase representation for Hi(z) is

MN-1
HI(Z)Z Z El,k(zMN)Z_k
k=0

These polyphase components can be arranged into a matrix E(zMY), where the
I** row of E(zMN) is comprised of the polyphase components of Hi(z). Thus, the

analysis bank can be represented by the following polyphase matrix:

r 7

Eo,o(ZMN) Eo,l(ZMN) te Eo,MN—l(ZMN)
E(:MV) = Ero(MN) B (2MY) - Byuna(2MV)
L EM—1,0(ZMN) EM—1,1(ZMN) EM-1,MN—1(2MN) i

This matrix can be passed through the multipoint decimators by applying the
first multipoint noble identity presented in section 3.1.8. The resulting polyphase

representation of the multipoint analysis bank is shown in figure 14.

Since there are M N polyphase components of each filter H;(z) and there are
M analysis filters (an M channel system), the polyphase matrix E(z)is M x MN.

The decimation vector length N generates a redundancy in this representation (in
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Figure 14. Multipoint Polyphase Representation

a conventional M channel multirate system, the polyphase matrix is M x M). This
redundancy will cause comb filters (reference section 2.1) to arise when perfect re-

construction multirate filter banks are designed.

Recently, Suter and Xia [23] presented an alternate representation of the mul-
tipoint polyphase matrix. They called this representation “vector polyphase”. In
the vector polyphase representation, there are only M channels in the resulting
polyphase system, but the resulting vector polyphase matrix, E(z), has dimension
MN x MN. Thus, the redundancy is still present and built directly into the vector

polyphase matrix.

3.1.10 Conditions for Perfect Reconstruction in Multipoint Multirate Sys-
tems. The output of a multipoint multirate system is typically multiple com-
binations of the polyphase components of the input signal z(n). These components
are scaled and shifted in such a way that the original signal is not, in general, recov-
erable from this output. This is due to the fact that multipoint decimators create
aliasing, and multipoint building blocks are time varying operators. However, it is
possible to control the analysis and synthesis filters which make up the multipoint

multirate system such that the output X (z) of the system is a scaled and delayed
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version of the input X (z) to the system. That is, X(z) = cz~™° X (z) for some scalar

¢ and some integer mo. When this is true, the multipoint multirate system exhibits

the perfect reconstruction property.

3.1.10.1 Vector Polyphase Requirement for Perfect Reconstruction.
Given the vector polyphase representation E(z) of an analysis bank and the vector
polyphase representation R(z) of a synthesis bank, the multipoint multirate system

exhibits perfect reconstruction if and only if [23]

0 IM—r
P(z) = R(z)E(z) = ¢z~ ® In
271, 0
where ¢ is any scalar, mg is a nonnegative integer, r € {0,1,---, M — 1}, and ® de-

notes the tensor product. If the vector polyphase representation E(z) of a multipoint
analysis bank is made to be paraunitary, and R(z) chosen such that R(z) = E(z),
then the multipoint multirate system will be a perfect reconstruction system [23].
These properties can all be tied to the multipoint polyphase representation developed

in section 3.1.

3.1.11 Multipoint Polyphase Requirements for Perfect Reconstruction.  Fig-
ure 15 shows the polyphase representation of a multipoint multirate system with
decimation ratio M and vector length N. Note that the polyphase representation
has M N channels due to the redundancy of this notation. The matrix P(z") shown
in figure 15 is the multipoint system polyphase matrix P(z) = R(z)E(z), where
E(z) and R(z) are the polyphase representations of the multipoint analysis baﬁk
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and synthesis bank, respectively. Thus,

EO,O(ZN) Eo,l(ZN) ch EO,MN—l(zN)
T
L EM—1,0(ZN) EM—1,1(ZN) EM—1,MN—1(ZN)
[ Roo(#")  Roa(z™) -+ Ropa(2V) |
T I
L RMN—l,o(ZN) RMN—l,l(ZN) RMN~1,M—1(ZN) i
[ Po(zN)  Poa(z") - Pon-a(eV)
P(zN) _ P1,0FZN) P1,1FZN) P1,MN.—1(ZN)
i Pun-10(zY) Pun-12(2Y) -+ Pun-i,mn-1(2V) |
X(Z) Uo(z) ’lMN Vo(z) WO(Z) TMN YO(Z)
z' , z'
W Y.
. U1(Z) =lM,N V1(Z) N . 1(2)‘TM,N 1(2) -
4 P(Z ) 4
TG V,.(2) W, (2 @ |7,
-l MN —=IMN L —X(2)

Figure 15. Multipoint System with Polyphase Matrix P(z)

In order to find the conditions required for perfect reconstruction in the multi-
point multirate system shown in figure 15, it is necessary to find the transfer function

of the entire system. That is, given an input signal X(z), what is the output X(z)"
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The expressions for the output of multipoint decimators and expander derived in

section 3.1 make this analysis possible.

Given the input signal X(z), the input to the multipoint decimator in each
channel of the polyphase system is given by Ui(z) = X(z)27*, where k € {0, 1,
.--, MN —1} is the number of the channel. The output of each decimator is Vi(2),

where

Vi(z) = (Ux(2)) [mn
MN-1

= 3 SEEY

(=0
where the Ej(z) are the M N polyphase components of Uy(z).

Uk(z) can be written in terms of the polyphase components of X (2) as follows:

MN-1
X)) = >, 2T (M)
=0
U(z) = X(2)z7*
MN-1
= 27F > 2T (M)
(=0
MN-1
— Z Z_(l+k)E1(ZMN)

=0

Making the change of variables v = [ + k, we find that

MN-1+k
U(z) = > 2" Ep(M7)

=k
MN-1 MN-1+k

= Y 2B+ Y 2 Ep(MY)
¥=k y=MN
MN-1 k-1

= Y B (M) + Y MV E i (M)
y=k y=0
MN-1 k-1

= Y T E (M) + MY e E i (M)
y=k ¥=0
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But the expression for Ug(2) in terms of its own polyphase components Ej(z) is given

by
MN-1

Us(2) = 3 7' E|(zM7)
=0
By equating this expression for Uy(2) and the previous expression for Uy(2), we find

that
B — { Er_(zMV) for k<1< MN -1

ZMNE poun(ZMY) for 0<1<k—1
and the final expression for Uy(z) is

k-1 MN-1
Up(2) = Y 2 MV En o (2MY) + Z (M)

=0

The output of the decimator in channel k is given by

Vi(z) = (Uk(2)) lmn
N-1
= E Ekn(ZN)Z—n
n=0
where the Ej (z) are the M N polyphase components (indexed by n) of the signal

Uk(z)

However, we know that

() 2 Epimn-k(z) for0<n<k—1
kn\2) =
En_k(2) fork<n<MN -1

and k is limited to the range 0 < k& < N — 1. Therefore, the expression for the

output of the decimator in each channel is given by

k-1 N-1
= Z Z_NEn+MN_k(ZN)z_n + Z En_k(ZN)Z_n
n=0 n=k
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Now, the polyphase system matrix P(z") is applied to the output of the deci-
mators. In each channel, this is accomplished by taking the inner product of the k"
row of P(z") with the column vector whose entries are the outputs of the decimators.

This result is given by

Wi(z) = z“Nizjoz (MIJZ:;PM(ZN)EMMN—I(ZN))

N-1

MN-1
+ 27" Z Pkl(zN)En_l(zN)>

n=| =0

_ Ni o (MN—I Pu(zM)E(n, 1, zN)>

n=0

where
En_l(z) l§n§N~—1
E(n,l,z) =
z'lEn+MN_l(Z) 0<n<l-1

By close observation of this expression for Wi (z), we find that the expression
inside the large parentheses is completely composed of powers of zN. Thus, the nt*

polyphase component of Wy(z) is given by

MN-1

S Pu(z")E(m, 1, M)
=0
The output of the multipoint expander is given by
N-1
Yi(2) = (Wi(2) Ty = 30 27" Fi, (+M7)
m=0

where Fy (z) are the 0 < m < N — 1 polyphase components of Wi(z).

Therefore, the complete expression for the output of each expander is

Yi(z) = :é T (Ml‘j_:‘,:sz(zMN)E(m, I, ZMN))
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(M—1—k)

and, multiplying each Yi(z) by 2z~ and summing over k, the expression for

the output of the multipoint multirate system is given by

R MN-1 MN-1
X(z) = Z —(MN-1-k) (Z z " ( Z Pkl(ZMN)g(m,l,ZMN)))
k=0 =0
where
E_ I<m<N-1
E(m,1,z) = !(2) =m=

Z"lEm.}_MN,.z(Z) 0<m<Il-1
are the NM polyphase components of the original input signal X(z).

Now that we have an expression for the output of the multipoint polyphase
system, it can be analyzed to find the conditions needed for perfect reconstruction.
The polyphase components of X (z) are all present in the above equation, but they are
weighted by various entries of P(z) and summed three different times. In order for
the system to exhibit perfect reconstruction, the output must include each polyphase

—motk where ¢ is a scaler, my

component of X(z), and they must be weighted by cz
is an integer, and k is the number of the polyphase component. If P = I, then this

condition will hold.

Unfortunately, it is not possible for P to equal the identity. P is the product
of the MN x M matrix R and the M x M N matrix E. Therefore, the rank of P
can be no greater than M, and P cannot be row-equivalent to the identity matrix.

However, P does not have to equal the identity.

Define the matrix én;; to be the singular matrix of zeros with the single entry
at position i, 7 equal to one. Let P(z) = Ips ® ngo- Thus, P(z) is a matrix of zeros,
with M equally spaced values of one on the main diagonal. A multipoint multirate
system with such a P(z) will exhibit the perfect reconstruction property. The proof

is given below.

Let X,(z) be a polyphase component of the system output X (z). To select this

component out of the expression for X (z), the values of m and k must be selected
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such that &(m,k,z) is a function of only E,(z). Also, we know that P;; = 1 if

i = j and i is a multiple of N, and P,; = 0 otherwise. With this information, the

expression for X,(z) becomes

MN-1-a

Xa(z) — Z z—(MN—l—k) (z—(a+k)Pkk(zMN)Ea(ZMN))
k=0
MN-1
Z 5= (MN-1-k) (z—(a+k—MN)Pkk(ZMN)Z—MNEQ(ZMN))
k=MN-a

This equation reduces to

Xa(z) = MEa(zMN)z_(MN_HO’)

Thus, when P(z) = Inf ® 8ngo, €ach of the MN polyphase component of the
input X(z) appears at the output, they are appropriately expanded and delayed,

and the system satisfies the perfect reconstruction property.

In general, sufficient conditions for perfect reconstruction in the multipoint

multirate system are

P(z) =cz™™ ® on
27, 0
where c is any scalar, mg is an integer, and 0 < r < M — 1. For a proof of these

general conditions, see Appendix B.

If the polyphase matrices F(z) and R(z) are chosen such that R(z) = E(z),
then the perfect reconstruction requirement demands that the columns of E(z) be
orthogonal. However, since the rank of E(z) is at most M, only M of the columns
can be linearly independent. Thus, E(z) must be chosen such that only M of its

columns are non-zero. Of course, these M non-zero columns must be orthogonal to
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each other. When E(z) and R(z) are chosen in this manner, the resulting P(z) is

sufficient for perfect reconstruction.

This requirement on E(z) can be related back to the polyphase components of

the original filter bank. Recall that

Eo,o(z) EO,l(Z) T EO,MN—l(Z)
E(z) _ El’o(Z) Elyl(z) e El,M]\.I—l(Z)
i EM—l,o(Z) EM—1,1(Z) T EM——l,MN—l(Z) i

The k** row of E(z) is composed of the M N polyphase components of the analysis
filter Hy(z). However, if E(z) satisfies the perfect reconstruction condition, then only
M of these M N entries are non-zero. That is, the filter Hy(z) only has polyphase

components Fy(z) where [ is a multiple of M. Thus,

MN-1
Hk(z) = E EI(ZMN)Z_l

0
1

.

— EnN(ZMN)Z_nN

n

Il
=)

because the polyphase components Fj(z) are zero for [ not a multiple of V.
If we let some prototype filter H;(z) be defined by

M-1
Hyz)= Y Ea(z")z

n=0

it becomes clear that Hy(z) = (Hi(z)) Twv. That is, Hx(z) is created from the proto-
type filter Hj(2) by conventional expansion by N. Hi(z) is a comb filter (reference

section 2.1).

This analysis demonstrates how comb filters naturally arise in multipoint mul-

tirate systems. If the sufficient conditions for perfect reconstruction are to hold, the
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filters which make up the analysis and synthesis banks must be comb filters created
from some set of prototype filters. Also, these prototype filter must form a con-
ventional paraunitary set to ensure that the columns of the multipoint polyphase
matrix E(z) are orthogonal. This provides a quick method for generating perfect re-
construction multipoint systems for various vector lengths from a set of conventional

perfect reconstruction filters.

3.1.12 Design of Perfect Reconstruction Filter Banks using the Vector Polyphase
Notation. The design of perfect reconstruction filter banks can also be accom-
plished from an analysis of the vector polyphase notation [23]. The same results will
be found to hold: the resulting filters for vector length N are comb filters generated

by conventional expansion by N.

Given the properties of perfect reconstruction (PR) multipoint multirate sys-
tems presented in section 3.1.10, the goal is to design an analysis filter bank and a
synthesis filter bank such that the multirate system satisfies the PR property. This
can be accomplished by choosing the analysis filters such that the vector polyphase
matrix E(z) is paraunitary, then choosing the synthesis filters such that R(z) = E(z)
[23]. The problem lies in designing an analysis bank such that the resulting vector

polyphase matrix E(z) is paraunitary.

Let Ty be a linear transformation. Given a set of prototype filters {Hj(2),
Hi(2), ---, Hjyr_1(2)} which satisfy the PR property in a conventional multirate
system, does there exist a set of filters {Tw[H}(2)], Tw[H1(2)], -+, In[Hp-1(2)]}
which satisfy the PR property for a multipoint multirate system with vector length
N?

In the traditional multiresolution wavelet decomposition, decimation by two is

performed at each stage. The vector representation of a filter H(z) with decimation
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ratio M = 2 and vector length N is given by Xia and Suter [23] to be

Ho(z) 2z 'Hy-1(z) 2z 'Hy-s(2) 27 Hy(z)

Hy(z) Hy(z) 7 Hy_1(2) 27 Hy(2)

H(z) = Hy(2) Hi(z) Hy(z) 27 Ha(z)
I Hy_1(2)  Hy-2(z) Hy_5(z) Ho(z) ]

In general, bold face denotes the vector representation of a filter, and normal font

denotes the scalar form of a filter.

A close analysis of the derivation of this matrix yields that the entries of H(z)
are actually the N conventional polyphase components of the filter H(z). That is, if

then the vector matrix representation of H(z) is

[ Eo(2) 2 'En-1(z) z'Bn_g(z) - 2'Ei(2) |

Ei(z) Eo(z) 27 En_1(2) 27 Ey(2)

H(z) = | Ey(2) Ei(z) Eo(2) 27 E3(z)
i EN_l(Z) HN_Q(Z) EN_3(Z) Eo(Z) ]

Each of the entries of H(z) can be broken into its two conventional polyphase

components. That is, we can replace each E;(z) with its polyphase representation

Ei(2)

= Ei,0(22) + 2_1E¢,1(22)

After substituting these polyphase components for every entry of H(z), then

H(z) can then be split into two submatrices. The first is composed entirely of even




powers of z, and the second composed of odd powers of z. This expression for H(z)
is:

H(Z) = EE(ZZ) + Z_IE()(ZZ)

where ) _
E010(22) Z_2EN_1,1(22) cee Z_2E1’1(Z2)
EE(Z2) _ EI,O.(Z2) Eo,o.(z2) . z‘2E2.11(22)
| EN—1,0(22) EN—2,0(22) Eo,o(ZQ) ]
and i )
EO,](ZZ) EN—1,0(Z2) T E1,0(22)
E 2 E 2 .. B 2
Eo(z?) = 1,1.(2 ) 0,1'(2’ ) | z,o.(Z )
| EN—1,1(Z2) EN—2,1(22) E0,1(22) i

These matrices Eg(z?) and Eo(2z?) are the vector polyphase components of
the matrix H(z). The elements of these vector polyphase matrices are actually the

2N conventional polyphase components of the filter H(z).

The goal of this analysis is to relate the elements of the vector polyphase
matrices to the polyphase components of a base filter, H'(z). Assume that the base
filter H'(z) is part of a perfect reconstruction set for a conventional multirate filter
bank with decimation ratio M = 2. Assume that the filter H(z) (from which the
vector polyphase matrices above were derived) is part of the analysis bank for a

multipoint multirate system with decimation ratio M = 2 and vector length N.

Now, assume that H(z) = Ty {H'(z)}, where the linear transformation, T, is
conventional expansion by N. The resulting filter H(z) = (H'(2)) Ty = H'(2") is a
“comb filter” [3]
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The conventional polyphase representation of H'(z) with M = 2 is
H'(z) = Eg(2") + 27 Ep(°)

Thus, the filter H(z) can be written in terms of the conventional polyphase compo-

nents of H'(z) as follows:

H(z) = H'(ZY)
B () + VB ()

However, representing H(z) in terms of its own N conventional polyphase compo-

nents yields

H(z) = z::OEk(zN)z'k

= Eo(ZV)+ 27 By (M) + -+ 2NV EN 4 (2Y)

el

By equating terms in this expression for H(z) and the previous expression for H(z),

we find that the conventional polyphase components are related by
Eo(2") = Ep(z*") + 27V Ep (™)

and

Ei<ZN) =0

for ¢ # 0.
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The vector representation H(z) of the filter H(z) can now be written in terms

of the conventional polyphase components of the prototype filter H'(z) as follows:

Ep(#) + 2 Ep(2?) 0
H(z)

0 Bjy(=%) + =~ Ep (<)

By splitting this matrix into its even and odd vector polyphase matrices Eg(z)
and Eo(z), an expression for H(z) can be derived in terms of the conventional

polyphase components of the prototype filter H'(z).

H(z) = Eg(z®) + 2 'Eo(2z?)

where 3 3
E%L(2%) 0
EE(ZZ) =
0 ER(2%)
and _ -
EL(2%) 0
Eo(Zz) =
0 EL(2%)

The elements in these two vector polyphase matrices are the convention polyphase

components of the prototype filter H'(2).

The same analysis can be used to derive the vector polyphase representation
of a second filter G(z). That is, it is assumed that G(z) = G'(2"), that G'(2) is part
of a conventional perfect reconstruction multirate system, and that the conventional

polyphase representation of G'(z) with M = 2 is given by

G'(2) = Fy(2*) + 27 Fo(2")
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With these assumptions, the vector polyphase matrix E(z) for the complete two

channel multipoint multirate system with decimation ratio M = 2 and vector length

N is given by

B - | P Eo@
| Fe(z) Fo(2)
[ By (2) 0 Ey2) 0 |
_ 0 Er(2) 0 E4(2)
Fi(z) 0 Fy2)
| o Fy(z) 0 Fy(z) |

If the conventional polyphase matrix E(z) of the set of filters H'(z) and G'(z) is
paraunitary, then the vector polyphase matrix E(z) formed from H(z) and G(z) will
also be paraunitary, and the resulting multipoint multirate system with decimation

ratio M = 2 and vector length N will exhibit perfect reconstruction.

This result reiterates the result of section 3.1.11, in that a multipoint perfect
reconstruction set can be constructed from comb filters. This provides a simple
and quick algorithm for generating perfect reconstruction multipoint multirate filter
banks. Given a set of conventional perfect reconstruction filters (which are readily
available in the literature [17, 19, 2, 22]), a new set of perfect reconstruction filters
can be easily formed for a multipoint multirate system for any vector decimation
length. Thus, the wavelet decomposition can be generalized to include varying vector
lengths at each level. With the above methods for generating perfect reconstruction
filter banks, only one set of prototype filters is necessary. The multipoint filters

for each vector length are generated as comb filters from the prototype filters, and
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. the resulting generalized wavelet decomposition satisfies the perfect reconstruction

property.

3.2 Wavelet Decomposition with Multipoint Multirate Systems

The traditional binary tree structured wavelet decomposition using a multirate
filter bank was shown in figure 16 and discussed in section 2.4.2. The filters H(z) and
G(z) which make up the analysis bank are typically a low pass filter and high pass
filter respectively, and together they form a perfect reconstruction set (paraunitary
pair).

By applying the algorithm developed in section 3.1.12, a new perfect recon-
struction pair Hy,(2) and Gy, (z) can be generated for any vector length N from
the original filters H(z) and G(z). Thus, the conventional decimators and expanders
in the wavelet tree can be replaced with multipoint decimators and expanders. If the
filters at each level of the tree are replaced with the appropriately chosen Hy, (z) and
Gn, (2), then the entire system will still exhibit the perfect reconstruction property.

The resulting multipoint wavelet decomposition tree with generic vector lengths is

I H 1] 2N,
6@ | 28, |

shown in Figure 16.

( B |28,

I O | 28, 1 6y ] 2x,
X0 — 6,00 | 2y,

Figure 16. Multipoint Wavelet Decomposition Tree with Generic Decimation Vec-
tor Lengths
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The advantage of such a system is that the decimation vector length can be
varied at each level, thus redistributing the energy of the original signal throughout
the decomposition tree. The choice of vector lengths may be made such that the
energy distribution of the decomposed signal is optimal in some sense. Thus, by pro-
cessing a signal with new decomposition algorithm, a higher rate of data compression

may be achieved.
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IV. A Data Compression Feasibility Study
4.1 Introduction

The goal is to achieve superior data compression over the traditional mul-
tiresolution wavelet decomposition by employing multipoint multirate in the binary
decomposition tree. This approach will permit the decimation vector length N to
be varied at each level of the decomposition. Section 4.2 will explore methods of
increasing the data compression by redistributing the energy in the high frequency

subbands [15].

4.2 Energy Redistribution Between Levels of the Multiresolution Analysis.

At each level of the wavelet decomposition, the coefficients are decimated by
a factor of two. However, only the coarse coefficients are further decomposed. If
the energy of the signal happens to be concentrated at a coarse decomposition level,
fewer coefficients/bits will be needed to represent that signal than if the signal energy
is concentrated at the more detailed levels which underwent less decimation. Thus,
improved data compression should be achievable if the energy of the signal can be

forced down to the coarser decomposition levels.

Figures 17 and 18 show a paraunitary prototype filter set and the related comb
filters which can be used in a multipoint multirate perfect reconstruction system. The
Daubechies filter Dgs was chosen as the prototype because it has compact support
and a relatively narrow transition band. This “sharpness” of the filter allows for
a decomposition based on the spectral content of a signal, without the increased

processing time of a larger filter.

Each of the filters shown in figures 17 and 18 can be part of a perfect recon-

struction set if the decimation vector lengths are chosen appropriately.
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Figure 17. Daubechies Low Pass Filter H(z) for Various Vector Lengths. (a) Pro-
totype Filter. (b) Vector Length of 2. (c) Vector Length of 4. (d) Vector
Length of 8

At each stage of the decomposition, the signal is divided into a low frequency
and high frequency subband via application of H and G, respectively. The low
frequency band is then decomposed again, as shown in figure 16. In the traditional
multiresolution wavelet decomposition, only conventional multirate building blocks
are used, so the only choice of filters are the standard low pass H and high pass
G (shown in figures 17a and 18a). However, when the wavelet decomposition is
generalized to allow multipoint decimation with varying vector lengths at each level
of the decomposition (as shown in figure 16), any of the filters from figure 17 can
be used. The choice of decimation vector length N (or , equivalently, the choice of
expansion ratio applied to the prototype filters H and G) can be made at each level

to maximize the amount of signal energy passed into the low frequency subband.
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If the signal is a low pass signal, then the optimum choice of vector length will
always be N = 1. This is shown by figure 18a, where the filter with the least low
frequency content is the prototype filter. Any choice of N > 1 will shift sections of
the pass band of G toward the low frequencies and possibly increase the amount of
signal energy passed through G. Since the goal is to maximize the amount of energy
passed through H (and therefore minimize the amount of energy passed through G),
choosing N > 1 can only adversely effect the energy distribution. Thus, in terms
of energy redistribution, if the data signal is low pass, a multipoint multirate filter

bank cannot improve data compression.

However, if the signal is band pass or high pass, a choice of decimation vector
length N # 1 can significantly impact the distribution of the signal energy between
subbands. For example, reference the signal and its spectrum displayed in figure

19. This signal is colored noise ranging in normalized digital frequency from 0.1 to
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0.4 (where 1.0 corresponds to the Nyquist rate). If the vector decimation length
is N = 1, a significant portion of the energy will be passed into the first high
frequency decomposition level, “d1”. This is because half of the signal energy exists
at frequencies higher than the 0.25 cutoff of G(z) (reference figure 18-a). For other
choices of vector length (N =4 or N = 8), less spectral energy of the signal overlaps
with the expanded high pass decomposition filter G(2") (reference figure 18c¢,18d).

25 T T 70

601

50r

40

30r

20— 1‘
\

200 400 60 0 05 1
(@ (b)

Figure 19. (a) Band Pass Signal. (b) Spectrum of Signal

At each level of the decomposition, a new vector length can be chosen which
maximizes the energy pushed into the low pass subband. Figure 20 shows the dis-
tribution of energy for optimal choices of decimation vector length N compared to

the traditional choice of N =1 at each level.

The abscissa in figure 20 represents the high frequency fraction of the spectrum
at each level of the decomposition. That is, the first half of the signal spectrum is
represented by the detail coefficients d1, while the second half of the signal spectrum
is further composed into d2 and ¢2. Thus, in figure 20 , “0.5” corresponds to dl,
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Figure 20. Energy Distribution for a Bandpass Signal. Solid line corresponds to
choice of vector length N =1 at each level. Dotted line corresponds to

optimal choice of N = [8,1,4, 8, 8] at each level
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“0.75” corresponds to d1 + d2, “0.875” corresponds to d1 + d2 + d3, etc. The value
of “1” is the entire spectrum: all the detail coefficients d1 to dr,, as well as the last

coarse coeflicients cy..

The ordinate in figure 20 represents the fraction of signal energy present in the
spectral bands. This value begins with the fraction of energy present in the detail

coefficients d1, and increases to “1” as the fraction of the spectrum increases to “1”.

For the signal shown in figure 19, the optimal choice of N was N = [8,1,4,8,8].
That is, the choice of vector length N = 8 minimized the amount of energy passed
into the first detail coefficients d1 (or, conversely, maximized the amount of energy
passed into the first coarse coefficients c¢1). At the second level, the choice of N =1
minimized the energy passed from cl into d2. At the next levels, N = 4 was the best
choice to minimize the energy in d3, and N = 8 was the best choice to minimize the

energy in both d4 and d5 (only five levels of decomposition were performed).

Figures 21 to 35 show other test signals and the results of the energy redistri-
bution. In figure 21, the signal is a narrow band signal which ranges in normalized
digital frequency from 0.22 to 0.28. Figure 22 shows the results of the energy redis-
tribution for the choice N = [4,4,1,8,8]. For this signal, the redistribution of energy
to the lower bands is much better than that for the signal shown in figure 19. This
is because the narrow band signal “fits” better into the nulls of the expanded comb

filters G(2).

This idea of narrow band signals fitting into the stop bands of the expanded
filters is best demonstrated with a pure sinusoid (which ideally has all of its energy
concentrated into one spectral line). Figure 23 shows a sinusoid and its spectrum, and
figure 24 shows the results of energy redistribution. In this case, the optimal choice
of vector lengths was N = [1, 1, 8,8, 8]. With the conventional wavelet decomposition
(N =1 at each level), the energy of the signal is distributed to the subband where
its frequency “naturally” falls. With optimal vector choices, the energy is entirely

distributed to the coarsest decomposition level. This result will hold true for any
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Figure 21. (a) Narrow Band Pass Signal. (b) Spectrum of Signal

sinusoid or extremely narrow band signal. Since a comb filter emphasizes certain
periodicities in a signal (see section 2.1), it is possible to match a comb filter to
the frequency of the sinusoidal input signal. Thus, if the decimation vector lengths
N are chosen to match the frequency of the input signal, then the signal will be
passed through the series of coarse decomposition comb filters to the lowest level of

decomposition.

Figures 25 to 28 demonstrate the results of the energy redistribution algorithm
on a low frequency band pass signal and a high pass signal. Note that the low
frequency band pass signal is not low pass, but rather a band pass signal in the
lower part of the spectral band. As expected, the results of energy redistribution on
the low frequency band pass signal are minimal, because this signal is closely matched
to the prototype low pass filter H(z). However, with the high pass signal, the energy
improvements are dramatic. Because the high pass signal is closely matched to the

prototype high pass filter G(z), any choice of vector length N # 1 (which expands
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Figure 22. Energy Distribution for a Narrow Band Signal. Solid line is choice of
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Figure 23. (a) Sinusoid Signal. (b) Spectrum of Sinusoid

12 T T T T T T T T T

Fraction of Energy
o o
(=2] (=
T

o
>
T

02r

'
1 1w

1 1 1 ' L
05 055 06 065 07 075 08 08 09 095 1
Fraction of Spectrum

Figure 24. Energy Distribution for a Sinusoid. Solid line is choice of N =1 at each
level. Dotted line optimal choice of N = [1,1,8,8,8] at each level
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G(z) and shifts portions of its pass band to lower frequencies) significantly reduces

the energy passed to the detailed subbands.
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Figure 25. (a) Low Frequency Band Pass Signal. (b) Spectrum of Signal.

Figure 29 is an edge enhanced version of the common test image “Lenna”.
This edge enhancement was performed by applying a high pass filter to the original
image. Since edge enhancement is a common technique in digital image processing,
this is a reasonable signal to process with the energy redistribution algorithm. To
illustrate this energy redistribution process, consider “Lenna’s eye” as depicted in
figure 30. For the purpose of this analysis, this 64 x 64 image is treated as a vector
with length 4096. Figure 31 shows the spectrum of this signal. Although it is a
relatively low frequency signal, it is still band pass. Therefore, one would expect
that the energy redistribution algorithm would have a positive impact. The results

of this redistribution are illustrated in figure 32, where an improvement is noted.

As an example of the processing of zero mean images, “Lenna’s eye” is con-

sidered with the mean subtracted out prior to processing. Since zero mean signals
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Figure 26. Energy Distribution for a Low Frequency Band Pass Signal. Solid line
is choice N = 1 at each level. Dotted line is optimal choice of N =
[1’ 8’ 87 8, 2]
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Figure 27. (a) High Pass Signal. (b) Spectrum of Signal
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Figure 28. Energy Distribution for a High Pass Signal. Solid line is choice N =1
at each level. Dotted line is optimal choice of N = [2,2,4, 8, 4]
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have no energy at the lowest frequency (DC), the corresponding energy distribution

improvements can be more significant, as illustrated in figure 33.
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Figure 29. Lenna

Now consider the signal which is depicted in figure 34. This signal is band pass
with localized narrow pass features. This signal and its spectrum are shown in figure
34. Although the signal is band pass, a significant portion of its energy is in the
lower part of the spectrum. This implies that energy redistribution improvements

will be minimal.

The results of the energy redistribution are shown in figure 35. There is an
improvement in the distribution of the energy, but it is slight. Also, at the fourth level
of decomposition, the redistributed energy is actually higher than the conventional
decomposition. It is possible that, by distributing slightly more energy into the
higher detail coeflicients, the overall energy distribution could have been even further

improved.
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Figure 31. Spectrum of Lenna’s Eye
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Figure 32. Energy Distribution for Lenna’s Eye. Solid line is choice of N =1 at
each level. Dotted line is optimal choice of N = [1,32,1, 16,16, 16,1, 8]

63




o 1= o o
(5] k=23 -~ (o]
X

Fraction of Energy
X

o
-y
T
1

0.3F _

o2t/ :

1 1

0.1 1 1 1 ) 1
5 75 875 9375 9688 9844 996t 9922 1.0

Fraction of Spectrum

Figure 33. Energy Distribution for Lenna’s Eye with Zero Mean. Solid line is
choice of N = 1 at each level. Dotted line is optimal choice of
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Figure 34. (a) Bandpass Signal with Narrowband Features. (b) Spectrum of Signal

4.8 Summary

Section 4.2 demonstrated the application of the multipoint wavelet decompo-
sition algorithm to various signals. It was shown that, for band pass or high pass
signals, the spectral energy of a signal can be redistributed, forcing more of the
energy down to the coarse coefficients. Therefore, for this class of signals, the mul-
tipoint wavelet decomposition algorithm could be implemented as a front end to a

vector quantizer, and thus used to prepare a signal for data compression.
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V. Conclusions and Recommendations for Further Study
5.1 Conclusions

This thesis provided a fundamentally new, systematic study of multipoint mul-
tirate signal processing systems. This study was accomplished by relating multipoint
multirate systems to conventional multirate systems. The z-transforms of the multi-
point decimator and multipoint expander were derived via equivalent circuits com-
prised entirely of conventional multirate operators. Proofs were presented for the
basic interconnections of the multipoint operators and for the multirate noble iden-
tities. The multipoint polyphase representation was developed, and the conditions

sufficient for perfect reconstruction in a multipoint multirate system were presented.

The problem of perfect reconstruction multirate filter bank design was ad-
dressed. The natural relationship of perfect reconstruction multipoint multirate
systems to comb filters was shown. In addition, the concept of varying the vector
lengths at each level of a generalized wavelet decomposition had never been explored

prior to this thesis.

Once these theoretical foundations were established, they were then applied
to a data compression feasibility study. It was clearly shown that, for band pass
and high pass signals, energy can be redistributed in the corresponding multipoint
multirate implementation of the wavelet decomposition. This distribution may prove

useful as a front end to a vector quantizer.

5.2 Recommendations

The following recommendations are made for future research:

1. With the encouraging results of the data compression feasibility study, a vector
quantizer should be developed that utilizes the multipoint multirate wavelet

decomposition scheme as a front end.
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. Conditions for multirate perfect reconstruction may be equivalent to biorthog-
onality in the multipoint wavelet decomposition. This relationship should be

explored.

. The optimal choice of vector length at each stage of the multipoint wavelet
decomposition was based on the energy distribution of the following decompo-
sition level. A “look ahead” algorithm should be developed which chooses the
decomposition vector lengths based on the overall energy distribution of the

decomposition.

. Since the theories of Multipoint Multirate Wavelet Decomposition and Vec-
tor Wavelet Decomposition were developed concurrently and independently, a
comparative evaluation should be performed in the context of the data com-

pression application.

. Recently, Xia and Suter have shown that non-paraunitary analysis filters in
a perfect reconstruction system provide additional degrees of freedom in the
design of multiwavelets. With the new framework for multipoint multirate
that is presented in this thesis, interesting designs may possibly be obtained if
the analysis filters are not paraunitary. Thus, the design of non-paraunitary
multipoint multirate analysis filters which satisfy the perfect reconstruction

property should be explored.
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Appendiz A. The Multipoint Discrete Fourier Transform Matriz

One of the fundamental operations on multirate systems is the application of
the Discrete Fourier Transform (DFT) matrix. In a single point, M channel multirate
system, the data are blocked into a vector x of length N. Then, the DFT matrix
W is applied to this vector, where [W]n, = exp(—j2rmn/N)/v/N. The resulting

vector y = Wz is the Discrete Fourier Transform of x.

In a multipoint M channel multirate system, there are two distinct methods
to analyze the DFT. One can analyze the system as blocking the data into a vector
x of length M N. In this case, the DFT matrix is identical to the matrix used in a

single point, M N channel multirate system.

The second method to analyze the system is to assume the data are blocked
into a set of M vectors z;, each with length N. It would be desirable to perform

DFT operations on each vector z;, then glue these results together in such a way
that the final answer is the DFT of the total block of data (of length M N). This

requires a completely new factorization of the DFT matrix.

To begin this analysis, assume that we have two blocks of data, each of length
N. That is, we have a 2 channel multipoint multirate system with vector length N.
Form the DFT matrix Wy. We desire a transformation T such that T'(Wxzo, Wnz;)
is the discrete Fourier transform of the length 2N vector x, where z = [z] 2zT]T. In

vector form, we have

T(Wngg, Whzy) = Wonz =Won | —

We break x up into two vectors of length 2N, [z 0---0]T and [0---0 zZ]T.

Our system is:
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_ . - . . oy
0
y =Wy +
0
\ L O - L &1 d
where w* = exp(—j2kn/(2N)) and
1 1 1 1
1 Wt w? cer 2N
1
W2N = \/_2-——W 1 w2 w4 v w2(2N_1)
1 Ww2N-1 20eN-1) w(2N-1)?

Since one half of each of the vectors operated on by Way is zero, when Woy is

distributed over the vectors, half of W,y can be eliminated for each vector as follows:

1
EZ_\/é:N‘{Wz:Nﬁo + Won z}

where _ -
1 1 ... 1
1 wl . wN—l
2/N = 1 w2 - w2(N_1)
1 WwIN-1 ... L,@N-1)(N-1)

70




and

1 1 e 1
WwN WwN+1 ce. WN-1
éfN — w2(N) Ww2(N+1) w2(2N'1)
WEN-D(IN)  JEN-1)(N+1) ... ,(2N-1)?

These two halves of Wyn can be manipulated by a row swapping matrix Eopn

into the following form:

WN WN
y = En 1 0 zo + 1 0 z
WN .. wN WN
0 w1 0 whV-1

Thus, the problem of taking a 2N-point Discrete Fourier Transform breaks
down into four N-point Discrete Fourier Transforms. This break down can be con-
tinued to even smaller point DFT’s, resulting in the tree structure shown in figure

36.

This tree shows the case for M = 8. Only the individual transforms in bold
type must be computed. The normal font transforms result from the addition and

row swapping of results from the lower levels.

If these transforms are implemented with Fast Fourier Transforms (FFT), then
the cost for an N-point transform is 5Nlog N FLOPS and the cost for an N-point ex-
ponential weighting is 6 N FLOPS [21]. Thus, by breaking an N-point transform into
its four (N/2)-point transforms, the cost is increased from 5Nlog N to 10Nlog N —4N.
For large N, this is an increase of almost a factor of 2. If the N-point transform is

broken down to k levels (the smallest transform is N/2* ), then the total cost will
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[ DFT{x(1:N/8)}
| DFT{Wx{1:N/8)}

[ DFT{x(N/8+1:N/4)}

vl

| DFT{Wx(N/8+1:N/4)}
[ DFT{x(N/4+1:3N/8))
| DFT{Wx(N/4+1:3N/8)}

" DFT{x(3N/8+1:N/2)}
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| DFT{x(3N/4+1:7N/8)}
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DFT{x(N/4+1:N/2)}
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DFT{x(3N/4+1:N)}

DFT{Wx(3N/4+1:N)}

Figure 36. DFT Tree
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be on the order of 5kNlogN. This will approach 5N (logN)?. Thus, this method of
computing the N-point Discrete Fourier Transform is much less efficient than the
N-point FFT, although this method is significantly cheaper than a direct application
of the DFT matrix (which would require on the order of N? FLOPS).

However, the advantage of this method is that the intermediate steps provide
complete Discrete Fourier Transforms on small blocks of the data. With the FFT,
the intermediate results have no meaning in this way. Thus, for an increase in
complexity of at worst logN, frequency information is gained on all the smaller
blocks at each level of the tree. This information may be worth the cost, depending
on the application. Additionally, when computing the FF'T, all the data must be
gathered before the computation can begin. With the method described above, the
computation can begin as soon as the smallest block of data is gathered. Thus, this
method will have throughput advantages over the FFT (although, if only the final
N-point transform is required, nothing will be more efficient than the FFT).

73




Appendiz B. Sufficient Conditions for Perfect Reconstruction in
Multipoint Multirate Systems

In section 3.1.11, it was stated that the sufficient conditions on P(z) for perfect

reconstruction in the multipoint multirate system are given by

0 Iy,
P(z) =cz™™ M ® Ony
27, 0

where c is any scalar, mo is an integer, and 0 <r < M — 1.

However, proof was only supplied for the case of r = 0 and 7+ = j. The more

general proof is provided here.

The output of the multipoint multirate system is given by

. MN-1 N-1 MN-1
X(z) = Z 5~ (MN-1-k) (Z 5 ( Z Pkl(ZMN)g(m’l’ZMN)))
k=0 m=0 =0
where
Enm_i(z) I<m<N-1

E(m,l,z) = {

Z_lEm+MN_.l(Z) 0<m<Il-1
and the Ei(z) are the NM polyphase components of the original input signal X(z).

In the expression for P(z), let 1 = 4o and j = jo be the indices where dy;; is

non zero. Let 19 = jo + Yo. If

then P(z) can be partitioned as in figure 37.

For the system to exhibit perfect reconstruction, each of the M N polyphase
components of the input signal must appear in the output, each expanded by M N,
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- N - (M-nNN

Figure 37. Partitioning of P(z)
multiplied by the same non-zero constant ¢, and each delayed by z=(a+2)  where
o €{0,1,---, MN — 1} is the index to the M N polyphase components of X(z) and

q is a non-negative integer. That is, for perfect reconstruction, X (z) must be given

by

MN-1

) =cz™? Z 2B, (

With the partitioning of P(z) shown in figure 37, there are two cases to analyze.
They are:

1. 0<k<(M—r)N—1

2. (M —r)N<k<MN-1,

When, 0 < k < (M —r)N — 1, the non-zero entries of P(z) are equal to one

and are indexed by

k = jo+ BN
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where 8 € {0,1,---,M —r — 1}.

Substituting in jo = 7o + Yo, these constraints become

Il = Nr+k+v
0 < k<(M-r)N-1

Pe(z) =1
We start with
X MN-1 N-1 MN-1
X(z)= Y z~WN-1=H) (Z z-m( 3 sz(zMN)E(m,l,zMN)>)
k=0 m=0 =0

Pick a value of @ € {0,1,-+-, MN — 1}, then set m and [ such that

Em_l(z) lSmSN—l

Z_lEm+MN_z(z) 0<m<lil-1

E(m,l, z) :{

reduces to F,(z) or 27 E4(z). Thus, when [ <m < N -1, we have m — [ = o and

E(m,1,z) = E4(z). In this case, our expression for X (z) becomes:

) MN-1 N-1 MN-1
X(z) = 2 Z—(MN—l—k) (Z 4™ ( Z Pkl(ZMN)g(m,l,ZMN)>>
k=0 m=0 =0
MN-1 MN-1
— Z z—(MN—-l—k) (Z—(l+a) ( Z Pkl(ZMN)Ea(ZMN)))
k=0 =0
MN-1MN-1
— Z Z Pklz—(MN—l-k-H-]-a)Ea(zMN)
k=0 1=0
But I =k + v + Nr, so we have
. MN-1MN-1
X(Z) — Z Z Pklz—(MN—1~k+l+a)Ea(zMN)
k=0 {==0
MN-1MN-1
_ Z Z P, kﬂo_NTz—(MN—1—k+k+qo+Nr+a)Ea(ZMN)
k=0 =0
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(M-r)N-1
= Yo oz
k=0
_ (M _ I,)z---((M-*-r)N—1-}—')10)Z—ozEOI(ZMN)

_((M+r)N—1+'yo+a)Ea(zMN)

Now, the second subcase is 0 < m < [ —1, in which case m = a+1— MN and

E(m,l,z) = 27 E,(z). The expression for X (z) becomes

X MN-1 MN-1
X(z) = Z —(MN-1-k) (Zz ( Z Pkl MN)S(m,Z,zMN)))
k=0 m=0 {=0
MN-1 MN-1
— Z 5~ (MN-1-k) , —(a+I-MN) ( Z Pu(z —MNEQ(ZMN))
k 0 |=0
—-1MN-1

— Z Z —(MN—1—ka+l)Pkl(ZMN)Ea(ZMN)
k 0 =

But [ = k + v + Nr, so we have

O MU ME —(MN-1-ka+! MN MN
X(z) = > Z 1=ket) P (2MN) Eo (M)
k=0 =0
MN-1
— Z Z—(MN~1—k+a+k+'yo+N7‘)Pk1k+’yo+NT(ZMN)EO((ZMN)
k=0
MN-1
= Z Z—(MN_HQHOJ(NT)Pk,k+vo+Nr(ZMN)Ea(zMN)
k=0
(M-r)N-1
— Z z—(MN——1+oz+'yo+N'r)Ea(zMN)
k=0

— (M _ r)z—-((M+r)N—1+fyo)Z—aEa(ZMN)

This is the same result derived above for the case [ < m < N — 1. Thus, for
any a € {0,1,---,MN — 1}, when 0 < k < (M —r)N — 1, the output of the system
is given by

X (z) = (M — 1)z~ (M+)N=1470)z-oF (zMN)
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Now, we move on to the second major case, where (m —r)N < k < M —1,

l=k—(M—r)N +, and Py(z) = z~!. Again, there are two subcases: [ < m <
N—-land0<m<Il-1.

In the first subcase, £(m,{, 2) = E,(z) and the expression for X(z)is

X(2)

k=0 m=0 =0

MN-1 MN-1
Z Z—(MN—-I—k) (Z—(l+a) ( Z _Pkl(ZMN)Ea(zMN)>)
k=0 =0

MN-1MN-1

Z Z Z-—(MN—l—k—i—H—a)Ea(ZMN)PH(ZMN)

k=0 =0

But =k — (M —r)N + 7, so we have

MN-1MN-1
Z Z Z—(MN—1~k+l+a)Ea(zMN)Pkl(ZMN)
k=0 =0
MN-1
Z z—(MN—l—k+k+'yO—(M—-r)N-}-a)Ea(ZMN)Pk’k_
k=0
MN-1
Z z—(—l+’¥o+rN+a)Eo[(zMN)Pk,k_(M_T)N_M0 (ZMN)
k=0
MN-1
Z z—(—1+fyo+'rN+oz)Ea(ZMN)
k=0
MN-1
Z Z—(MN—1+'yo+rN+a)Ea(ZMN)
k=0
MN-1
Z Z—((M+7‘)N—1+'yo+cx)Ea(ZMN)
k=(M-r)N
rz—((M+r)N—1+'yo)Z—aEa(ZMN)

(M=1)N40 (2

e (8 (4 1)

MN)

Finally, we have the last subcase with (M —r)N < k < MN —-1,1 =k —
(M —7)N +7,0<m<1-1, &m,l,z) = E,(z)z"!, and our expression for X(z)
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becomes

) MN-1 N-1 MN-1
X = Y z—<MN‘1"“)(ZZ"”( > sz(zMN>s<mJ,ZMN>))
k=0 m=0 =0
. M —(MN-1-k) M —(a+I-MN) MN MNy —(MN)
= 3 =z > oz Pu(z"7)Eq(27 )2
k=0 =0
_ ZIMIZV:I (MN-1-k+a+i- MN+MN)P ( MN)EQ(ZMN)
k 0 I=0
—1MN-1

— Z Z ~(MN-1- k+a+l)Pkl(ZMN)Ea(ZMN)
k=0 =0

But ! =k — (M —r)N + 7. Thus, we have

MN-1MN-1

X(Z) — Z Z P (MN-1- k+a+l)Pk1(ZMN)Ea(ZMN)
k=0 =0
MN-1

z—(MN_l_k+a+k_(M_T)N+70)Pk,k—(M—'r)N+'yO (ZMN)EQ,(ZMN)

Il
]

k

MN-1
— E z—(—1+a+rN+'yo)Z—MNEa(ZMN)

k=0
MN-1
— Z z—(MN—1+a+7'N+'yo)Ea(ZMN)
k=(M—r)N
_ rz—((M+r)N—1+'yo)Z~aEa(ZMN)

]

Thus, for any a € {0,1,---,MN — 1}, when (M —r)N <k < MN —1, the
output of the system is given by

X (z) = rz~ (M+IN-14%0) - | (zMN)

Combining this with the output for 0 < k < (M — r)N — 1, the total output of the

system for a particular polyphase component E,(z) is given by

X(Z) — MZ—((M+r)N—1+'yo)Z—aEa(ZMN)
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Let ¢ = (M +7r)N — 1 + 7, and let ¢ = M. The complete output of the multipoint

multirate system is now given by

) MN-1
X(z)=cz7® Y 27 E, (M)
a=0

where ¢ is a constant, ¢ is a non-negative integer, and the system satisfies the perfect

reconstruction property.
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